natural age hardening annealed aluminum
If you do an internet search on
"natural age hardening annealed aluminum"
you will find a wealth of knowledge
Here is a short overview.. though still pretty complex..
Age Hardening
After solution treatment and quenching, hardening is achieved either at room temperature (natural ageing) or with a precipitation heat treatment (artificial ageing). In some alloys sufficient precipitation occurs in a few days at room temperature to yield stable products with properties that are adequate for many applications. These alloys sometimes are precipitation heat treated to provide increased strength and hardness in wrought and cast alloys. Other alloys with slow precipitation reactions at room temperature are always precipitation heat treated before being used.
In some alloys, notably those of the 2xxx series, cold working of freshly quenched materials greatly increases its response to later precipitation treatment. Mills take advantage of this phenomenon by applying a controlled amount of rolling (sheet and plate) or stretching (extrusion, bar and plate) to produce higher mechanical properties. However, if the higher properties are used in design, reheat treatment must be avoided.
Where natural ageing is carried out the time may vary from around 5 days for the 2xxx series alloys to around 30 days for other alloys. The 6xxx and 7xxx series alloys are considerably less stable at room temperature and continue to exhibit changes in mechanical properties for many years. With some alloys, natural ageing may be suppressed or delayed for several days by refrigeration at -18°C or lower. It is common practice to complete forming, straightening and coining before ageing changes material properties appreciably. Conventional practice allows for refrigeration of alloys 2014 - T4 rivets to maintain good driving characteristics.
The artificial ageing or precipitation heat treatments are low temperature long time processes. Temperatures range from 115-200°C and times from 5-48 hours. As with solution treatment accurate temperature control and spatial variation temperatures are critical to the process and generally temperatures should be held to a range of ±7°C.
The change of time-temperature parameters for precipitation treatment should receive careful consideration. Larger particles or precipitates result from longer times and higher temperatures. The objective is to select the cycle that produces the optimum precipitate size and distribution pattern. Unfortunately, the cycle required to maximise one property, such as tensile strength, is usually different from that required to maximise others such as yield strength and corrosion resistance. Consequently, the cycles used represent compromises that provide the best combination of properties.
If you do an internet search on
"natural age hardening annealed aluminum"
you will find a wealth of knowledge
Here is a short overview.. though still pretty complex..

Age Hardening
After solution treatment and quenching, hardening is achieved either at room temperature (natural ageing) or with a precipitation heat treatment (artificial ageing). In some alloys sufficient precipitation occurs in a few days at room temperature to yield stable products with properties that are adequate for many applications. These alloys sometimes are precipitation heat treated to provide increased strength and hardness in wrought and cast alloys. Other alloys with slow precipitation reactions at room temperature are always precipitation heat treated before being used.
In some alloys, notably those of the 2xxx series, cold working of freshly quenched materials greatly increases its response to later precipitation treatment. Mills take advantage of this phenomenon by applying a controlled amount of rolling (sheet and plate) or stretching (extrusion, bar and plate) to produce higher mechanical properties. However, if the higher properties are used in design, reheat treatment must be avoided.
Where natural ageing is carried out the time may vary from around 5 days for the 2xxx series alloys to around 30 days for other alloys. The 6xxx and 7xxx series alloys are considerably less stable at room temperature and continue to exhibit changes in mechanical properties for many years. With some alloys, natural ageing may be suppressed or delayed for several days by refrigeration at -18°C or lower. It is common practice to complete forming, straightening and coining before ageing changes material properties appreciably. Conventional practice allows for refrigeration of alloys 2014 - T4 rivets to maintain good driving characteristics.
The artificial ageing or precipitation heat treatments are low temperature long time processes. Temperatures range from 115-200°C and times from 5-48 hours. As with solution treatment accurate temperature control and spatial variation temperatures are critical to the process and generally temperatures should be held to a range of ±7°C.
The change of time-temperature parameters for precipitation treatment should receive careful consideration. Larger particles or precipitates result from longer times and higher temperatures. The objective is to select the cycle that produces the optimum precipitate size and distribution pattern. Unfortunately, the cycle required to maximise one property, such as tensile strength, is usually different from that required to maximise others such as yield strength and corrosion resistance. Consequently, the cycles used represent compromises that provide the best combination of properties.
Source: Materials World, Vol. 12, No. 3, pp. 37-38, March 2004.![]() |
Comment